LogoLogo
  • Welcome to the CP Subject Centre
  • Faria Education Group
  • Core
    • Service Learning
    • Language Development
    • Reflective Project
    • Personal and Professional Skills
  • Career-related Study
  • Studies in language and literature
    • Language and Literature
      • Aims & Objectives
      • Syllabus
        • Area of Exploration - Readers, Writers and Texts
        • Area of Exploration - Time and Space
        • Area of Exploration - Intertextuality: Connecting Texts
        • Development of Linguistic Skills
        • Conceptual Understanding
        • Non-Literary Texts
      • Assessment
    • Literature
      • Aims and Objectives
      • Syllabus
        • Areas of Exploration
        • Development of Linguistic Skills
        • Conceptual Understanding
      • Assessment
    • Classical Languages (Last Assessment 2023)
      • Aims & Objectives
      • Syllabus
        • Part 1: Study of Language
        • Part 2: Study of Literature
        • Part 3: Individual study
      • Assessment
    • Classical Languages (First Assessment 2024)
    • Literature and Performance (First Assessment 2024)
  • Language acquisition
    • Language Ab Initio
      • Aims & Objectives
      • Syllabus
        • Identities
        • Experiences
        • Human Ingenuity
        • Social Organization
        • Sharing the Planet
        • Texts
      • Assessment
    • Language B
      • Aims & Objectives
      • Syllabus
        • Identities
        • Experiences
        • Human Ingenuitiy
        • Social Organization
        • Sharing the Planet
        • Texts
      • Assessment
  • Individuals and societies
    • Business Management (Last Assessment 2023)
      • Aims & Objectives
      • Syllabus
        • Unit 1: Business Organization and Environment
        • Unit 2: Human Resource Management
        • Unit 3: Finance and Accounts
        • Unit 4: Marketing
        • Unit 5: Operations Management
      • Assessment
    • Business Management (First Assessment 2024)
    • Digital Society
    • Economics
      • Aims & Objectives
      • Syllabus
        • Unit 1: Introduction to Economics
        • Unit 2: Microeconomics
          • Real-world issue 1
          • Real-world issue 2
        • Unit 3: Macroeconomics
          • Real-world issue 1
          • Real-world issue 2
        • Unit 4: The Global Economy
          • Real-world issue 1
          • Real-world issue 2
      • Assessment
    • Geography
      • Aims & Objectives
      • Syllabus
        • Part one: Geographic themes (SL and HL options)
          • Option A: Freshwater
          • Option B: Oceans and coastal margins
          • Option C: Extreme environments
          • Option D: Geophysical hazards
          • Option E: Leisure, tourism and sport
          • Option F: Food and health
          • Option G: Urban environments
        • Part two: Geographic perspectives - global change (SL and HL core)
          • Unit 1: Changing population
          • Unit 2: Global climate - vulnerability and resilience
          • Unit 3: Global resource consumption and security
        • Part two: Geographic perspectives - global change (HL core extension)
          • Unit 4: Power, places and networks
          • Unit 5: Human development and diversity
          • Unit 6: Global risks and resilience
      • Assessment
    • Global Politics
      • Aims & Objectives
      • Syllabus
        • Engagement Activity
        • Core
        • Additional Higher Level
      • Assessment
    • History
      • Aims & Objectives
      • Syllabus
        • Prescribed Subjects
        • World History Topics
        • HL Options: Depth Studies - History of Africa and the Middle East
        • HL Options: Depth Studies - History of the Americas
        • HL Options: Depth Studies - History of Asia and Oceania
        • HL Options: Depth Studies - History of Europe
      • Assessment
    • Information Technology in a Global Society
      • Aims & Objectives
      • Syllabus
        • Strand 1: Social and Ethical Significance
        • Strand 2: Application to Specific Scenarios
        • Strand 3: IT Systems
        • The Project (practical application of IT skills)
      • Assessment
    • Philosophy
      • Aims & Objectives
      • Syllabus
        • Prescribed Texts
        • Core
        • Additional Higher Level
        • Options
      • Assessment
    • Psychology
      • Aims & Objectives
      • Syllabus
        • Core
          • Biological approach to understanding behaviour
          • Cognitive approach to understanding behaviour
          • Sociocultural approach to understanding behaviour
          • Approaches to researching behaviour
        • Options
          • Abnormal psychology
          • Developmental psychology
          • Health psychology
          • Psychology of human relationships
      • Assessment
    • Social and Cultural Anthropology
      • Aims & Objectives
      • Syllabus
        • Part 1: Engaging with Anthropology
          • The language of anthropology
          • The practice of anthropology
          • Anthropological thinking
        • Part 2: Engaging with Ethnography
          • Group 1
          • Group 2
          • Group 3
        • Part 3: Engaging with Anthropological Practice
      • Assessment
    • World Religions
      • Aims & Objectives
      • Syllabus
        • Part 1: Introduction to World Religions
        • Part 2: In-depth Studies
        • Part 3: Internal Assessment
      • Assessment
  • Sciences
    • Biology (FA 2025)
    • Biology (LA 2024)
      • Aims & Objectives
      • Syllabus
        • Core
          • 1. Cell biology
          • 2. Molecular biology
          • 3. Genetics
          • 4. Ecology
          • 5. Evolution and biodiversity
          • 6. Human physiology
        • Additional Higher Level
          • 7. Nucleic acids
          • 8. Metabolism, cell respiration and photosynthesis
          • 9. Plant biology
          • 10. Genetics and evolution
          • 11. Animal physiology
        • Options
          • Option A: Neurobiology and behaviour
          • Option B: Biotechnology and bioinformatics
          • Option C: Ecology and conservation
          • Option D: Human physiology
      • Assessment
    • Chemistry (FA 2025)
    • Chemistry (LA 2024)
      • Aims & Objectives
      • Syllabus
        • Core
          • 1. Stoichiometric relationships
          • 2. Atomic structure
          • 3. Periodicity
          • 4. Chemical bonding and structure
          • 5. Energetics/thermochemistry
          • 6. Chemical kinetics
          • 7. Equilibrium
          • 8. Acids and bases
          • 9. Redox processes
          • 10. Organic chemistry
          • 11. Measurement and data processing
        • Additional Higher Level
          • 12. Atomic structure
          • 13. The periodic table - the transition metals
          • 14. Chemical bonding and structure
          • 15. Energetics/thermochemistry
          • 16. Chemical kinetics
          • 17. Equilibrium
          • 18. Acids and bases
          • 19. Redox processes
          • 20. Organic chemistry
          • 21. Measurement and analysis
        • Options
          • A. Materials
          • B. Biochemistry
          • C. Energy
          • D. Medicinal chemistry
      • Assessment
    • Computer Science (FA 2025)
    • Computer Science (LA 2024)
      • Aims & Objectives
      • Syllabus
        • Core
          • Topic 1 - System fundamentals
          • Topic 2 - Computer organization
          • Topic 3 - Networks
          • Topic 4 - Computational thinking, problem-solving and programming
        • Additional Higher Level
          • Topic 5 - Abstract data structures
          • Topic 6 - Resource management
          • Topic 7 - Control
        • Options
          • A - Databases
          • B - Modelling and simulation
          • C - Web science
          • D - Object-oriented programming
      • Assessment
    • Design Technology
      • Aims & Objectives
      • Syllabus
        • Core
          • 1. Human factors and ergonomics
          • 2. Resource management and sustainable production
          • 3. Modelling
          • 4. Final production
          • 5. Innovation and design
          • 6. Classic design
        • Additional Higher Level
          • 7. User-centred design (UCD)
          • 8. Sustainability
          • 9. Innovation and markets
          • 10. Commercial production
      • Assessment
    • Nature of Science
      • Aims & Objectives
      • Syllabus
        • Introduction
        • Part A - Concepts
        • Part B - The Quest for Understanding
        • Part C - The Impact of Science
        • Part D - Challenges and the Future
      • Assessment
    • Physics (FA 2025)
    • Physics (LA 2024)
      • Aims & Objectives
      • Syllabus
        • Core
          • 1. Measurements and uncertainties
          • 2. Mechanics
          • 3. Thermal physics
          • 4. Waves
          • 5. Electricity and magnetism
          • 6. Circular motion and gravitation
          • 7. Atomic, nuclear and particle physics
          • 8. Energy production
        • Additional Higher Level
          • 9. Wave phenomena
          • 10. Fields
          • 11. Electromagnetic induction
          • 12. Quantum and nuclear physics
        • Options
          • A. Relativity
          • B. Engineering physics
          • C. Imaging
          • D. Astrophysics
      • Assessment
    • Sports, Exercise and Health Science
      • Aims & Objectives
      • Syllabus
        • Core
          • Topic 1: Anatomy
          • Topic 2: Exercise physiology
          • Topic 3: Energy systems
          • Topic 4: Movement analysis
          • Topic 5: Skill in sports
          • Topic 6: Measurement and evaluation of human performance
        • Additional Higher Level
          • Topic 7: Further anatomy
          • Topic 8: The endocrine system
          • Topic 9: Fatigue
          • Topic 10: Friction and drag
          • Topic 11: Skill acquisition and analysis
          • Topic 12: Genetics and athletic performance
          • Topic 13: Exercise and immunity
        • Options
          • Option A: Optimizing physiological performance
          • Option B: Psychology of sports
          • Option C: Physical activity and health
          • Option D: Nutrition for sports, exercise and health
      • Assessment
  • Mathematics
    • Mathematics: analysis and approaches
      • Aims & Objectives
      • Syllabus
        • Topic 1: Numbers and Algebra
        • Topic 2: Functions
        • Topic 3: Geometry and Trigonometry
        • Topic 4: Statistics and Probability
        • Topic 5: Calculus
      • Assessment
    • Mathematics: applications and interpretation
      • Aims & Objectives
      • Syllabus
        • Topic 1: Number and Algebra
        • Topic 2: Functions
        • Topic 3: Geometry and Trigonometry
        • Topic 4: Statistics and Probability
        • Topic 5: Calculus
      • Assessment
  • The arts
    • Dance
      • Aims & Objectives
      • Syllabus
        • Composition and Analysis
        • World Dance Studies
        • Performance
      • Assessment
    • Film
      • Aims & Objectives
      • Syllabus
        • Reading Film
        • Contextualizing Film
        • Exploring Film Production Roles
        • Collaboratively Producing Film (HL only)
      • Assessment
    • Music
      • Aims & Objectives
      • Syllabus
        • Areas of Inquiry
        • Contexts
        • Musical Processes
        • Musical Roles
        • Exploring Music in Context
        • Experimenting with Music
        • Presenting Music
      • Assessment
    • Theatre (Last Assessment 2023)
      • Aims & Objectives
      • Syllabus
        • Theatre in Context
        • Theatre Processes
        • Presenting Theatre
      • Assessment
    • Theatre (First assessment 2024)
    • Visual Arts
      • Aims & Objectives
      • Syllabus
        • Visual Arts in Context
        • Visual Arts Methods
        • Communicating Visual Arts
        • The Visual Arts Journal
        • Art-making Forms
        • Research
      • Assessment
  • Interdisciplinary courses
    • Literature and Performance
      • Aims and Objectives
      • Syllabus
        • Part 1: Critical Study of Texts
        • Part 2: Exploration of the Chose Approach to the Text
        • Part 3: Realization of Texts in Performance
        • Prescribed Literature in Translation
      • Assessment
    • Environmental Systems & Societies
      • Aims & Objectives
      • Syllabus
        • Topic 1: Foundations of environmental systems and societies
        • Topic 2: Ecosystems and ecology
        • Topic 3: Biodiversity and conservation
        • Topic 4: Water and aquatic food production systems and societies
        • Topic 5: Soil systems and terrestrial food production systems and societies
        • Topic 6: Atmospheric systems and societies
        • Topic 7: Climate change and energy production
        • Topic 8: Human systems and resource use
      • Assessment
  • School-based syllabuses
    • Art History
      • Aims & Objectives
      • Syllabus
        • Topic 1: The Art and Architecture of Ancient Greece
        • Topic 2: Rome - Republic and Empire
        • Topic 3: The Middle Ages
        • Topic 4: Romanesque and Gothic Art and Architecture
        • Topic 5: The Art of the Renaissance
        • Topic 6: The Baroque Age - Art and the Architecture of 17th-century Europe
        • Topic 7: The 'Age of Reason' to 'Romanticism'
        • Topic 8: Experiments in the 19th- and 20th-century Art
      • Assessment
    • Astronomy
      • Aims & Objectives
      • Syllabus
        • Topic 1: The Stars
        • Topic 2: The Planets
        • Topic 3: Galaxies
        • Topic 4: Cosmology
      • Assessment
    • Brazilian Social Studies
      • Aims & Objectives
      • Syllabus
        • Topic 1: The Construction of Brazilian Geographical Space
        • Topic 2: Brazil in the Globalization Era - Core Topic
        • Topic 3: The Demographic and Urban Dynamics of Contemporary Brazil
        • Topic 4: Environment and Society
        • Topic 5: From Discovery to the End of the Colonial Era (1500-1822)
        • Topic 6: The Monarchical Experience (1822-1889)
        • Topic 7: Early Republican Brazil (1889-1945) - Core Topic
        • Topic 8: Contemporary Brazil (1945 - )
      • Assessment
    • Classical Greek and Roman Studies
      • Aims & Objectives
      • Syllabus
        • Part A - Two Topics from the Following Four Options
        • Part B - Two Topics from the Following Four Options
      • Assessment
    • Food Science and Technology
      • Aims & Objectives
      • Syllabus
        • 1. Nutrition
        • 2. Materials, Component and Their Application
        • 3. Food Quality and Safety
        • 4. Food Process Engineering
      • Assessment
    • Marine Science
      • Aims & Objectives
      • Syllabus
        • Core
          • Topic 1 Origin and Structure of Oceans
          • Topic 2 Dynamics of Earth's Crust
          • Topic 3 Patterns of Water Movement
          • Topic 4 Properties of Ocean Water
          • Topic 5 Life in Oceans
        • Options
          • A. Marine ecosystems and conservation
          • B. Atmosphere, ocean and climate
          • C. Geology of ocean basins
      • Assessment
    • Modern History of Kazakhstan
      • Aims & Objectives
      • Syllabus
        • Topic 1. Kazakhstan at the Beginning of the 20th Century
        • Topic 2. Kazakhstan During the Civil Confrontation (1917-1920)
        • Topic 3. The Formation of the Soviet Union and Kazakhstan (1920-1940)
        • Topic 4. The Great Patriotic War and Kazakhstan (1941-1945)
        • Topic 5. Kazakhstan and the Socialism (1946-1985)
        • Topic 6. Kazakhstan: from Perestroika to independence
      • Assessment
    • Political Thought
      • Aims & Objectives
      • Syllabus
        • Topic 1: Political Thinkers
        • Topic 2: Political Concepts
      • Assessment
    • Turkey in the 20th Century
      • Aims & Objectives
      • Syllabus
        • Turkey at the Beginning of the 20th Century
        • Topic 2: The Foundations of the Turkish Republic 1923-1945
        • Topic 3: The Global Changes Between the World Wars and Their Effect on Turkey 1918-1939
        • Topic 4: Turkey under pressure during World War II
        • Topic 5: Reconstruction, democracy and developments in the region 1945-1985
        • Topic 6: The Effects of Globalization and the Dialogue with Europe 1985-2000
      • Assessment
    • World Arts and Cultures
      • Aims & Objectives
      • Syllabus
        • Part 1: Prescribed Topics
        • Part 2: Intercultural Studies
        • Part 3: Regional Study
      • Assessment
Powered by GitBook
On this page
  • 1.1 Environmental value systems
  • 1.2 Systems and models
  • 1.3 Energy and equilibria
  • 1.4 Sustainability
  • 1.5 Humans and pollution
  1. Interdisciplinary courses
  2. Environmental Systems & Societies
  3. Syllabus

Topic 1: Foundations of environmental systems and societies

1.1 Environmental value systems

Significant ideas:

  • Historical events, among other influences, affect the development of environmental value systems (EVSs) and environmental movements.

  • There is a wide spectrum of EVSs, each with its own premises and implications.

Knowledge and understanding:

  • Significant historical influences on the development of the environmental movement have come from literature, the media, major environmental disasters, international agreements and technological developments.

  • An EVS is a worldview or paradigm that shapes the way an individual, or group of people, perceives and evaluates environmental issues, influenced by cultural, religious, economic and socio-political contexts.

  • An EVS might be considered as a system in the sense that it may be influenced by education, experience, culture and media (inputs), and involves a set of interrelated premises, values and arguments that can generate consistent decisions and evaluations (outputs).

  • There is a spectrum of EVSs, from ecocentric through anthropocentric to technocentric value systems.

  • An ecocentric viewpoint integrates social, spiritual and environmental dimensions into a holistic ideal. It puts ecology and nature as central to humanity and emphasizes a less materialistic approach to life with greater self-sufficiency of societies. An ecocentric viewpoint prioritizes biorights, emphasizes the importance of education and encourages self-restraint in human behaviour.

  • An anthropocentric viewpoint argues that humans must sustainably manage the global system. This might be through the use of taxes, environmental regulation and legislation. Debate would be encouraged to reach a consensual, pragmatic approach to solving environmental problems.

  • A technocentric viewpoint argues that technological developments can provide solutions to environmental problems. This is a consequence of a largely optimistic view of the role humans can play in improving the lot of humanity. Scientific research is encouraged in order to form policies and to understand how systems can be controlled, manipulated or changed to solve resource depletion. A pro-growth agenda is deemed necessary for society's improvement.

  • There are extremes at either end of this spectrum (for example, deep ecologists - ecocentric to cornucopian–technocentric), but in practice, EVSs vary greatly depending on cultures and time periods, and they rarely fit simply or perfectly into any classification.

  • Different EVSs ascribe different intrinsic value to components of the biosphere.

Applications and skills:

  • Discuss the view that the environment can have its own intrinsic value.

  • Evaluate the implications of two contrasting EVSs in the context of given environmental issues.

  • Justify, using examples and evidence, how historical influences have shaped the development of the modern environmental movement.

1.2 Systems and models

Significant ideas:

  • A systems approach can help in the study of complex environmental issues.

  • The use of systems and models simplifies interactions but may provide a more holistic view without reducing issues to single processes.

Knowledge and understanding:

  • A systems approach is a way of visualizing a complex set of interactions which may be ecological or societal.

  • These interactions produce the emergent properties of the system.

  • The concept of a system can be applied at a range of scales.

  • A system is comprised of storages and flows.

  • The flows provide inputs and outputs of energy and matter.

  • The flows are processes that may be either transfers (a change in location) or transformations (a change in the chemical nature, a change in state or a change in energy).

  • In system diagrams, storages are usually represented as rectangular boxes and flows as arrows, with the direction of each arrow indicating the direction of each flow. The size of the boxes and the arrows may be representative of the size/magnitude of the storage or flow.

  • An open system exchanges both energy and matter across its boundary while a closed system exchanges only energy across its boundary.

  • An isolated system is a hypothetical concept in which neither energy nor matter is exchanged across the boundary.

  • Ecosystems are open systems; closed systems only exist experimentally, although the global geochemical cycles approximate to closed systems.

  • A model is a simplified version of reality and can be used to understand how a system works and to predict how it will respond to change.

  • A model inevitably involves some approximation and therefore loss of accuracy.

Applications and skills:

  • Construct a system diagram or a model from a given set of information.

  • Evaluate the use of models as a tool in a given situation, for example, climate change predictions.

1.3 Energy and equilibria

Significant ideas:

  • The laws of thermodynamics govern the flow of energy in a system and the ability to do work.

  • Systems can exist in alternative stable states or as equilibria between which there are tipping points.

  • Destabilizing positive feedback mechanisms will drive systems towards these tipping points, whereas stabilizing negative feedback mechanisms will resist such changes.

Knowledge and understanding:

  • The first law of thermodynamics is the principle of conservation of energy, which states that energy in an isolated system can be transformed but cannot be created or destroyed.

  • The principle of conservation of energy can be modelled by the energy transformations along food chains and energy production systems.

  • The second law of thermodynamics states that the entropy of a system increases over time. Entropy is a measure of the amount of disorder in a system. An increase in entropy arising from energy transformations reduces the energy available to do work.

  • The second law of thermodynamics explains the inefficiency and decrease in available energy along a food chain and energy generation systems.

  • As an open system, an ecosystem will normally exist in a stable equilibrium, either in a steady-state equilibrium or in one developing over time (for example, succession), and maintained by stabilizing negative feedback loops.

  • Negative feedback loops (stabilizing) occur when the output of a process inhibits or reverses the operation of the same process in such a way as to reduce change - it counteracts deviation.

  • Positive feedback loops (destabilizing) will tend to amplify changes and drive the system toward a tipping point where a new equilibrium is adopted.

  • The resilience of a system, ecological or social, refers to its tendency to avoid such tipping points and maintain stability.

  • Diversity and the size of storages within systems can contribute to their resilience and affect their speed of response to change (time lags).

  • Humans can affect the resilience of systems through reducing these storages and diversity.

  • The delays involved in feedback loops make it difficult to predict tipping points and add to the complexity of modelling systems.

Applications and skills:

  • Explain the implications of the laws of thermodynamics to ecological systems.

  • Discuss resilience in a variety of systems.

  • Evaluate the possible consequences of tipping points.

1.4 Sustainability

Significant ideas:

  • All systems can be viewed through the lens of sustainability.

  • Sustainable development meets the needs of the present without compromising the ability of future generations to meet their own needs.

  • Environmental indicators and ecological footprints can be used to assess sustainability.

  • Environmental impact assessments (EIAs) play an important role in sustainable development.

Knowledge and understanding:

  • Sustainability is the use and management of resources that allows full natural replacement of the resources exploited and full recovery of the ecosystems affected by their extraction and use.

  • Natural capital is a term used for natural resources that can produce a sustainable natural income of goods or services.

  • Natural income is the yield obtained from natural resources.

  • Ecosystems may provide life-supporting services such as water replenishment, flood and erosion protection, and goods such as timber, fisheries, and agricultural crops.

  • Factors such as biodiversity, pollution, population or climate may be used quantitatively as environmental indicators of sustainability. These factors can be applied on a range of scales, from local to global. The Millennium Ecosystem Assessment (MA) gave a scientific appraisal of the condition and trends in the world’s ecosystems and the services they provide using environmental indicators, as well as the scientific basis for action to conserve and use them sustainably.

  • EIAs incorporate baseline studies before a development project is undertaken. They assess the environmental, social and economic impacts of the project, predicting and evaluating possible impacts and suggesting mitigation strategies for the project. They are usually followed by an audit and continued monitoring. Each country or region has different guidance on the use of EIAs.

  • EIAs provide decision-makers with information in order to consider the environmental impact of a project. There is not necessarily a requirement to implement an EIA’s proposals, and many socio-economic factors may influence the decisions made.

  • Criticisms of EIAs include: the lack of a standard practice or training for practitioners, the lack of a clear definition of system boundaries and the lack of inclusion of indirect impacts.

  • An ecological footprint (EF) is the area of land and water required to sustainably provide all resources at the rate at which they are being consumed by a given population. If the EF is greater than the area available to the population, this is an indication of unsustainability.

Applications and skills:

  • Explain the relationship between natural capital, natural income and sustainability.

  • Discuss the value of ecosystem services to a society.

  • Discuss how environmental indicators such as MA can be used to evaluate the progress of a project to increase sustainability.

  • Evaluate the use of EIAs.

  • Explain the relationship between EFs and sustainability.

1.5 Humans and pollution

Significant ideas:

  • Pollution is a highly diverse phenomenon of human disturbance in ecosystems.

  • Pollution management strategies can be applied at different levels.

Knowledge and understanding:

  • Pollution is the addition of a substance or an agent to an environment through human activity, at a rate greater than that at which it can be rendered harmless by the environment, and which has an appreciable effect on the organisms in the environment.

  • Pollutants may be in the form of organic or inorganic substances, light, sound or thermal energy, biological agents or invasive species, and may derive from a wide range of human activities including the combustion of fossil fuels.

  • Pollution may be non-point or point source, persistent or biodegradable, acute or chronic.

  • Pollutants may be primary (active on emission) or secondary (arising from primary pollutants undergoing physical or chemical change).

  • Dichlorodiphenyltrichloroethane (DDT) exemplifies a conflict between the utility of a “pollutant” and its effect on the environment.

Applications and skills:

  • Construct systems diagrams to show the impact of pollutants.

  • Evaluate the effectiveness of each of the three different levels of intervention, with reference to figure 3.

  • Evaluate the uses of DDT.

PreviousSyllabusNextTopic 2: Ecosystems and ecology

Last updated 2 years ago